

SOLUTION

a) The function f is defined using two different equations. To find $f(4)$, we mus, first determine whether to use the equation $f(x)=2 x$ or the equation $f(x)=x+1$. To do this, we focus first on the two parts of the domain.

$$
f(x)=\left\{\begin{array}{ll}
2 x, & \text { if } x<0, \\
x+1, & \text { if } x \geq 0
\end{array} \quad 4\right. \text { is in the second part of the domain. }
$$

Since $4 \geq 0$, we use the equation $f(x)=x+1$. Thus, $f(4)=4+1=5$.
b) To find $f(-10)$, we first note that $-10<0$, so we must use the equation $f(x)=2 x$. Thus, $f(-10)=2(-10)=-20$.

Try Exercise 113.
EXAMPLE 13 Find each function value for the function g given by

$$
g(x)= \begin{cases}x+2, & \text { if } x \leq-2 \\ x^{2}, & \text { if }-2<x \leq 5 \\ 3 x, & \text { if } x>5\end{cases}
$$

a) $g(-2)$
b) $g(3)$
c) $g(7)$

SOLUTION It may help to visualize the domain on the number line.
a) To find $g(-2)$, we note that -2 is in the part of the domain that is shaded blue. Since $-2 \leq-2$, we use the first equation, $g(x)=x+2$:

$$
g(-2)=-2+2=0
$$

b) We note that 3 is in the part of the domain that is shaded red. Since $-2<3 \leq 5$, we use the second equation, $g(x)=x^{2}$:

$$
g(3)=3^{2}=9
$$

c) We note that 7 is in the part of the domain that is shaded gray. Since $7>5$, we use the last equation, $g(x)=3 x$:

$$
g(7)=3 \cdot 7=21
$$

Try Exercise 115.

Concept Reinforcement

 following sentences.1. A function is a special kind of \qquad correspondence between two sets.
2. In any function, each member of the domain is paired with \qquad one member of the range.
3. For any function, the set of all inputs, or first values, is called the \qquad domain .
4. For any function, the set of all outputs, or second values, is called the \qquad range
5. When a function is graphed, members of the domain are located on the \qquad horizontal axis.
6. When a function is graphed, members of the range are located on the \qquad vertical axis.
7. The notation $f(3)$ is read \qquad "the value of f at 3
8. The vertical line test can be used to determine whether or not a graph represents a function.

Tetermine whether each correspondence is a function.
9.

10. $3 \longrightarrow 9$

No
11. Girl's age
(in months)
Average daily

Source: American Family Physician, December 1993, p. 1435
12. Boy's age
(in months)

Source: American Family Physician, December 1993, p. 1435
13.

Source: The Rock and Roll Hall of Fame and Museum, Inc. No
14.

15. Predator

Answers to Exercises 27-32 are on p. IA-3.

Determine whether each of the following is a function. Identify any relations that are not functions.
17. The correspondence matching a USB flash drive with its storage capacity Function
18. The correspondence matching a member of a rock band with the instrument the person can play
19. The correspondence matching a player on a team with that player's uniform number Function
20. The correspondence matching a triangle with its area Function For each correspondence, (a) write the domain, (b) write the range, and (c) determine whether the correspondence is a function.
21. $\{(-3,3),(-2,5),(0,9),(4,-10)\}$
(a) $\{-3,-2,0,4\}$; (b) $\{-10,3,5,9\}$;
(c) yes
22. $\{(0,-1),(1,3),(2,-1),(5,3)\}$
23. $\{(1,1),(2,1),(3,1),(4,1),(5,1)\}$
24. $\{(1,1),(1,2),(1,3),(1,4),(1,5)\}$
(a) $\{1\}$; (b) $\{1,2,3,4,5\}$; (c) no
25. $\{(4,-2),(-2,4),(3,-8),(4,5)\}$
(a) $\{-2,3,4\}$; (b) $\{-8,-2,4,5\}$; (c) no
26. $\{(0,7),(4,8),(7,0),(8,4)\}$

For each graph of a function, determine (a) $f(1)$;
(b) the domain; (c) any x-values for which $f(x)=2$; and (d) the range.

30.

Determine the domain and the range of each function.

42.

[^0]55.

56.

Find the function values.
57. $g(x)=2 x+3$
a) $g(0) \quad 3$
b) $g(-4)-5$
c) $g(-7) \quad-11$
d) $g(8)$
e) $g(a+2)$
f) $g(a)+2$
$2 a+7$
$2 a+5$
58. $h(x)=3 x-2$
a) $h(4) \quad 10$
b) $h(8) \quad 22$
c) $h(-3) \quad-11$
d) $h(-4)-14$
e) $h(a-1)$
f) $h(a)-1$
59. $f(n)=5 n^{2}+4 n$
$3 a-5$
$3 a-3$
a) $f(0) \quad 0$
b) $f(-1) \quad 1$
c) $f(3) \quad 57$
Anal d) $f(t)$
e) $f(2 a)$
f) $2 \cdot f(a)$
60. $\stackrel{5 t^{2}}{g}(n) \stackrel{4 t}{=} 3 n^{2}-2 n$
$20 a^{2}+8 a$ $10 a^{2}+8 a$
a) $g(0) \quad 0$
b) $g(-1) \quad 5$
c) $g(3) \quad 21$
d) $g(t) 3 t^{2}-2 t$
e) $g(2 a)$
f) $2 \cdot g(a)$
$12 a^{2}-4 a$
$6 a^{2}-4 a$
61. $f(x)=\frac{x-3}{2 x-5}$
a) $f(0)$
b) $f(4)$
c) $f(-1) \quad \frac{4}{7}$
d) $f(3)$
e) $f(x+2) \frac{x-1}{2 x-1}$
62. $s(x)=\frac{3 x-4}{2 x+5}$
a) $s(10)$
b) $s(2)$
c) $s\left(\frac{1}{2}\right) \quad-\frac{5}{12}$
d) $s(-1)-\frac{7}{3}$
e) $s(x+3)$
$\frac{3 x+5}{2 x+11}$

Use a graphing calculator to find the function values.
63. $f(a)=a^{2}+a-1$
a) $f(-6)$
29
b) $f(1.7) \quad 3.59$
64. $g(t)=3 t^{2}-8$
a) $g(29) \quad 2515$
b) $g(-0.1) \quad-7.97$
65. $h(n)=8-n-\frac{1}{n}$
a) $h(0.2) \quad 2.8$
b) $h\left(-\frac{1}{4}\right) \quad 12.25$
66. $p(a)=\frac{2}{a}-a^{2}$
a) $p\left(\frac{1}{8}\right) \quad 15.984375$
b) $p(-0.5) \quad-4.25$

The function A described by $A(s)=s^{2} \frac{\sqrt{3}}{4}$ gives the area of an equilateral triangle with side s.

$4 \sqrt{3} \mathrm{~cm}^{2} \approx 6.93 \mathrm{~cm}^{2}$
67. Find the area when a side measures 4 cm .
68. Find the area when a side measures 6 in.

$$
9 \sqrt{3} \mathrm{in}^{2} \approx 15.59 \mathrm{in}^{2}
$$

The function V described by $V(r)=4 \pi r^{2}$ gives the surface area of a sphere with radius r.

69. Find the surface area when the radius is 3 in .
$36 \pi \mathrm{in}^{2} \approx 113.10 \mathrm{in}^{2}$
70. Find the surface area when the radius is 5 cm .
$100 \pi \mathrm{~cm}^{2} \approx 314.16 \mathrm{~cm}^{2}$
71. Pressure at Sea Depth. The function $P(d)=1+(d / 33)$ gives the pressure, in atmospheres (atm), at a depth of d feet in the sea. Note that $P(0)=1 \mathrm{~atm}, P(33)=2 \mathrm{~atm}$, and so on. Find the pressure at 20 ft , at 30 ft , and at 100 ft .
72. Melting ${ }^{1 \frac{20}{33} \text { Snow; } 1 \frac{10}{11} \text { atm; } 4 \frac{1}{33} \mathrm{~atm}}$ The function $W(d)=0.112 d$ approximates the amount, in centimeters, of water that results from d centimeters of snow melting. Find the amount of water that results from snow melting from depths of $16 \mathrm{~cm}, 25 \mathrm{~cm}$, and $100 \mathrm{~cm} . \begin{aligned} & 1.792 \mathrm{~cm} \text {; } \\ & 2.8 \mathrm{~cm} \text {; }\end{aligned}$ 11.2 cm

Fill in the missing values in each table.

$$
\begin{gathered}
f(x)=2 x-5 \\
x \quad f(x)
\end{gathered}
$$

73. $8 \quad 11$
74. $9 \quad 13$
75. $0 \quad-5$
76. $-4 \quad-13$

$$
\begin{gathered}
f(x)=\frac{1}{3} x+4 \\
x \quad f(x)
\end{gathered}
$$

77. $-\frac{21}{2} \quad \frac{1}{2}$
78. $-13-\frac{1}{3}$
79. $\frac{1}{2} \div \frac{25}{6}$
80. $-\frac{1}{3} \quad \frac{35}{9}$
81. If $f(x)=4-x$, for what input is the output 7 ? -3
82. If $f(x)=5 x+1$, for what input is the output $\frac{1}{2}$? $-\frac{1}{10}$
83. If $f(x)=0.1 x-0.5$, for what input is the output -3 ? -25
84. If $f(x)=2.3-1.5 x$, for what input is the output 10 ? $-\frac{77}{15}$, or $-5.1 \overline{3}$
In Exercises 85-98, determine the zeros, if any, of each function.

85. $f(x)=x-5 \quad 5$

86.

93. $f(x)=\frac{1}{2} x+10 \quad-20$
92. $f(x)=x+3-3$
94. $f(x)=\frac{2}{3} x-6 \quad 9$

- Answers to Exercises 100, 102, and 108 are on p. IA-3.

95. $f(x)=2.7-x$
2.7
96. $f(x)=0.5-x \quad$ 「
97. $f(x)=3 x+7 \quad-\frac{7}{3}$
98. $f(x)=5 x-8 \frac{8}{5}$

Find the domain of f.
99. $f(x)=\frac{5}{x-3}$ $\{x \mid x$ is a real number and $x \neq 3\}$
101. $f(x)=\frac{x}{2 x-1}$

102
102. $f(x)=\frac{2 x}{4 x+3}$
103. $f(x)=2 x+1 \quad \mathbb{R}$
104. $f(x)=x^{2}+3$
105. $f(x)=|5-x| \mathbb{R}$
106. $f(x)=|3 x-4| \mathbb{R}$
107. $f(x)=\frac{5}{x-9}$
108. $f(x)=\frac{3}{x+1}$
109. $f(x)=x^{2}-9 \mathbb{R}$
110. $f(x)=x^{2}-2 x+1 \quad \mathbb{R}$
111. $f(x)=\frac{2 x-7}{5} \mathbb{R}$
112. $f(x)=\frac{x+5}{8} \mathbb{R}$

Find the indicated function values for each function.
113. $f(x)= \begin{cases}x, & \text { if } x<0, \\ 2 x+1, & \text { if } x \geq 0\end{cases}$
a) $f(-5)-5$
b) $f(0) \quad 1$
c) $f(10) \quad 21$
114. $g(x)= \begin{cases}x-5, & \text { if } x \leq 5, \\ 3 x, & \text { if } x>5\end{cases}$
a) $g(0) \quad-5$
b) $g(5) \quad 0$
c) $g(6) \quad 18$
115. $G(x)= \begin{cases}x-5, & \text { if } x<-1, \\ x, & \text { if }-1 \leq x \leq 2, \\ x+2, & \text { if } x>2\end{cases}$
a) $G(0) \quad 0$
b) $G(2) \quad 2$
c) $G(5) \quad 7$
116. $F(x)= \begin{cases}2 x, & \text { if } x \leq 0, \\ x, & \text { if } 0<x \leq 3, \\ -5 x, & \text { if } x>3\end{cases}$
a) $F(-1)-2$
b) $F(3)$
c) $F(10) \quad-50$
117. $f(x)= \begin{cases}x^{2}-10, & \text { if } x<-10, \\ x^{2}, & \text { if }-10 \leq x \leq 10, \\ x^{2}+10, & \text { if } x>10\end{cases}$
a) $f(-10) 100$
b) $f(10) \quad 100$
c) $f(11)$
131
118. $f(x)= \begin{cases}2 x^{2}-3, & \text { if } x \leq 2, \\ x^{2}, & \text { if } 2<x<4, \\ 5 x-7, & \text { if } x \geq 4\end{cases}$
a) $f(0)-3$
b) $f(3) \quad 9$
c) $f(6) \quad 23$

TN 119. Explain why the domain of the function given by $f(x)=\frac{x+3}{2}$ is \mathbb{R}, but the domain of the function given by $g(x)=\frac{2}{x+3}$ is not \mathbb{R}.
20. For the function given by $n(z)=a b+w z$, what is the independent variable? How can you tell?

SKILL REVIEW

To prepare for Section 2.2, review simplifying expressions and solving for a variable (Sections 1.2 and 1.6).
Simplify. [1.2]
121. $\frac{6-3}{-2-7}-\frac{1}{3}$
122. $\frac{-2-(-4)}{5-8}-\frac{2}{3}$
123. $\frac{-5-(-5)}{3-(-10)} 0$
124. $\frac{2-(-3)}{-3-2}-1$

Solve for y. [1.6]
125. $2 x-y=8 \quad y=2 x-8$
126. $5 x+5 y=10$
127. $2 x+\frac{2}{3} x+2=6$
128. $5 x-\frac{5}{4} x-2=8$

SYNTHESIS

TW 129. Jaylan is asked to write a function relating the number of fish in an aquarium to the amount of food needed for the fish. Which quantity should he choose as the independent variable? Why?
TW 130. Explain the difference between finding $f(0)$ and finding the zeros of f.
For Exercises 131 and 132, let $f(x)=3 x^{2}-1$ and $g(x)=2 x+5$.
131. Find $f(g(-4))$ and $g(f(-4))$. 26; 99
132. Find $f(g(-1))$ and $g(f(-1))$. 26; 9
133. If f represents the function in Exercise 15, find $f(f(f(f($ tiger $))))$. Worm
Pregnancy. For Exercises 134-137, use the following graph of a woman's "stress test." This graph shows the size of a pregnant woman's contractions as a function of time.
134. How large is the largest contraction that occurred during the test? About 22 mm
135. At what time during the test did the largest contraction occur? About 2 min 50 sec
136. On the basis of the information provided, how large a contraction would you expect 60 sec after the end of the test? Why?
137. What is the frequency of the largest contraction?
138. The greatest integer function $f(x)=\llbracket x \rrbracket$ is defined as follows: $\lceil x \rrbracket$ is the greatest integer that is less than or equal to x. For example, if $x=3.74$, then $\llbracket x \rrbracket=3$; and if $x=-0.98$, then $\lceil x \rrbracket=-1$. Graph the greatest integer function for $-5 \leq x \leq 5$. (The notation $f(x)=\operatorname{int}(x)$, used in many graphing calculators, is often found in the math num submenu.)
139. Suppose that a function g is such that $g(-1)=-7$ and $g(3)=8$. Find a formula for g if $g(x)$ is of the form $g(x)=m x+b$, where m and b are constants. $g(x)=\frac{15}{4} x-\frac{13}{4}$

Try Exercise Answers: Section 2.1
9. Yes 17. Function 21. (a) $\{-3,-2,0,4\}$;
(b) $\{-10,3,5,9\}$; (c) yes 31. (a) 3 ; (b) $\{x \mid-4 \leq x \leq 3\}$;
(c) -3 ; (d) $\{y \mid-2 \leq y \leq 5\}$ 39. Domain: \mathbb{R}; range: \mathbb{R}
45. Domain: $\{x \mid x$ is a real number and $x \neq-2\}$;
range: $\{y \mid y$ is a real number and $y \neq-4\}$
57. (a) 3 ; (b) -5 ; (c) -11 ; (d) 19 ; (e) $2 a+7$; (f) $2 a+5$
63. (a) 29 ; (b) 3.59 83. $-25 \quad 91$. 5
99. $\{x \mid x$ is a real number and $x \neq 3\}$
113. (a) -5 ; (b) 1 ; (c) 21 115. (a) 0 ; (b) 2 ; (c) 7

[^0]: \square
 Answers to Exercises 33-48 are on p. IA-3.

